 # Logarithm: Practice Problems

Q.1. Find the value of log9 59049
A. 9
B. 7
C. 5
D. 8
Q.2. . If log 2 = 03.301 and log 3 = 0.4771, find the value of log3 725
A. 19.46
B. 18.96
C. 21.54
D. 14.48
Q.3. If x, y and z are the sides of a right angled triangle, where ‘z’ is the hypotenuse, then find the value of (1/logx+zy) + (1/logx-zy)
A. 1
B. 2
C. 3
D. 4
Q.4. Find the value of log2 2 + log2 22 + log2 23 + ........ + log2 2n.
A. n(n+1)/2
B. n+1
C. n
D. 2n
Q.5. If log5 16, log5 (3x-4), log5 (3x+97/16) are in arithmetic progression, then x is
A. 8
B. 1
C. 5
D. 3
Q.6. If ‘x’ is an integer then solve (log2 x) 2 – log2 x4 - 32 = 0.
A. 125
B. 256
C. 375
D. None of these
Q.7. If log5y – logsub>5√y = 2 logy 5, then find the value of y.
A. 25
B. 35
C. 10
D. 15
Q8. If (1/4)log2x + 4log2y = 2 + log64-18 then
A. y16 = 64/x2
B. x16 = 64/y
C. y16 = 8/x4
D. y16 = 64/x
Q9. If log 2 = 0.301 and log 3 = 0.4771, find the number of digits in 4812.
A. 19
B. 21
C. 20
D. 24
Q10. If log3[log2 (x2 – 4x – 37)] = 1, where ‘x’ is a natural number, find the value of x.
A. 9
B. 7
C. 10
D. 4